Limitations of collateral flow after occlusion of a single cortical penetrating arteriole

نویسندگان

  • Nozomi Nishimura
  • Nathanael L Rosidi
  • Costantino Iadecola
  • Chris B Schaffer
چکیده

Occlusions of penetrating arterioles, which plunge into cortex and feed capillary beds, cause severe decreases in blood flow and are potential causes of ischemic microlesions. However, surrounding arterioles and capillary beds remain flowing and might provide collateral flow around the occlusion. We used femtosecond laser ablation to trigger clotting in single penetrating arterioles in rat cortex and two-photon microscopy to measure changes in microvessel diameter and red blood cell speed after the clot. We found that after occlusion of a single penetrating arteriole, nearby penetrating and surface arterioles did not dilate, suggesting that alternate blood flow routes are not actively recruited. In contrast, capillaries showed two types of reactions. Capillaries directly downstream from the occluded arteriole dilated after the clot, but other capillaries in the same vicinity did not dilate. This heterogeneity in capillary response suggests that signals for vasodilation are vascular rather than parenchymal in origin. Although both neighboring arterioles and capillaries dilated in response to topically applied acetylcholine after the occlusion, the flow in the territory of the occluded arteriole did not improve. Collateral flow from neighboring penetrating arterioles is neither actively recruited nor effective in improving blood flow after the occlusion of a single penetrating arteriole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture.

We review the organizational principles of the cortical vasculature and the underlying patterns of blood flow under normal conditions and in response to occlusion of single vessels. The cortex is sourced by a two-dimensional network of pial arterioles that feeds a three-dimensional network of subsurface microvessels in close proximity to neurons and glia. Blood flow within the surface and subsu...

متن کامل

Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries

The accumulation of small strokes has been linked to cognitive dysfunction. Although most animal models have focused on the impact of arteriole occlusions, clinical evidence indicates that venule occlusions may also be important. We used two-photon excited fluorescence microscopy to quantify changes in blood flow and vessel diameter in capillaries after occlusion of single ascending or surface ...

متن کامل

Targeted Occlusion of Individual Pial Vessels of Mouse Cortex.

Targeted photothrombosis is a method to occlude individual arterioles and venules that lie on the surface of the cerebral cortex. It has been used to study collateral flow patterns within the pial vascular network following occlusion of single surface vessels (Schaffer et al., 2006; Blinder et al., 2010; Nguyen et al., 2011), as well as to generate localized ischemic strokes following occlusion...

متن کامل

Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke.

Pial arterioles actively change diameter to regulate blood flow to the cortex. However, it is unclear whether arteriole reactivity and its homeostatic role of conserving red blood cell (RBC) flux remains intact after a transient period of ischemia. To examine this issue, we measured vasodynamics in pial arteriole networks that overlie the stroke penumbra during transient middle cerebral artery ...

متن کامل

Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion

A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2010